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ABSTRACT

Slow magnetosonic waves associated with flares were observed in coronal loops by SOHO/SUMER,

SDO/AIA in various EUV bandpasses, and other instruments. The excitation and damping of slow

magnetosonic waves provides information on the magnetic, temperature, and density structure of

the loops. Recently, it was found using 1.5D models that the thermal conduction is suppressed and

compressive viscosity is enhanced in hot (T > 6 MK) flaring coronal loops. We model the excitation

and dissipation of slow magnetosonic waves in hot coronal loops with realistic magnetic geometry,

enhanced density, and temperature (compared to background corona) guided by EUV observations

using 3D MHD visco-resistive model. The effects of compressive viscosity tensor component along the

magnetic field are included with classical and enhanced viscosity coefficient values for the first time in

3D MHD coronal loop model. The waves are excited by a velocity pulse at the footpoint of the loop

at coronal lower boundary. The modeling results demonstrate the excitation of the slow magnetosonic

waves and nonlinear coupling to other wave modes, such as the kink and fast magnetosonic. We find

significant leakage of the waves from the hot coronal loops with small effect of viscous dissipation in

cooler (6MK) loops, and more significant effects of viscous dissipation in hotter (10.5MK) coronal loops.

Our results demonstrate that nonlinear 3D MHD models are required to fully account for various wave

couplings, damping, standing wave formation, and viscous dissipation in hot flaring coronal loops. Our

viscous 3D MHD code provides a new tool for improved coronal seismology.

Keywords: magnetohydrodynamics (MHD) —Sun: flares loops — waves: wave dissipation

1. INTRODUCTION

Observations and modeling of slow standing waves in flaring coronal loops in the context of coronal seismology, using

primarily Solar and Heliospheric Observatory (SOHO) Solar Ultraviolet Measurements of Emitted Radiation (SUMER)

and Yohkoh Bragg Crystal Spectrometer (BCS) instruments observations were reviewed by Wang (2011). Recent

observations of slow mode waves in flaring loops were obtained by Solar Dynamics Observatory (SDO) Atmospheric

Imaging Assembly (AIA) and other instruments, and analyzed in several studies (e.g., Kumar et al. 2013, 2015; Wang

et al. 2015; Mandal et al. 2016; Pant et al. 2017; Wang et al. 2018; Prasad & Van Doorsselaere 2021a), also, see

the reviews by Wang (2016); Wang et al. (2021). Analysis of slow mode observations from multiple instruments

were performed and various scaling laws and the oscillations Q-factor (ratio of damping time to wave period) were
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2 Ofman and Wang

determined by Nakariakov et al. (2019). Recently, Wang & Ofman (2019) applied coronal seismology to SDO/AIA

observations of flare-induced slow magnetosonic waves for the determination of transport coefficients, such as, thermal

conduction and compressive viscosity in hot (∼ 10 MK) coronal plasma.

The rapid (in terms of wave-periods) excitation of standing slow magnetosonic waves in coronal loops is puzzling

phenomenon, since it is expected that several reflections from both footponts of the wave would be needed for the

establishment of a standing wave. Various scenarios for the rapid formation of the standing wave were proposed. For

example, Selwa et al. (2007) used 2.5D ideal MHD model to demonstrate the impulsive excitation of slow standing

magnetosonic waves in a curved coronal loop due to the propagation speed differences of the fast magnetosonic pulse

inside and outside the loop. The importance of 2D curvature effects on the propagation of slow magnetosonic waves

was also demonstrated by Gruszecki & Nakariakov (2011). The modeling of rapid slow magnetosonic wave excitation

in ‘cool’ (1MK) coronal loops was previously extended using 3D MHD model with similar results as the 2.5D MHD

model (see, Selwa & Ofman 2009). In the ideal MHD models the damping of the waves was mainly due to the wave

refraction out of the curved magnetic loop, wave mode coupling, and footpoint leakage. Ofman et al. (2012) studied the

excitation of waves in hot coronal loops by a velocity pulse injected at the footpoint coronal boundary using 3D resistive

MHD, and found that this scenario leads to generation of slow mode and coupled fast mode waves in the coronal loops,

with significant wave leakage out of the loop. Fang et al. (2015) studied the excitation of slow magnetosonic wave in a

hot coronal loop by chromospheric evaporation flows using 2.5D MHD model. Recently, Kohutova & Popovas (2021)

studied the excitation and evolution of coronal oscillations using 3D radiation MHD code Bifrost (Gudiksen et al.

2011) with self-consistent simulations of solar atmosphere from the convection zone to the solar corona. However, we

note that the potentially important effects of compressive viscosity on the dissipation of slow mode waves and on the

rapid formation of standing waves in coronal loops were not considered in the recent studies.

The effects of compressive viscosity on the dissipation of the slow magnetosonic waves in ∼1 MK coronal plumes

were studied in the past using 1D and 2.5D MHD models (Ofman et al. 2000) and in coronal loops (Nakariakov

et al. 2000). The damping of slow magnetosonic waves in coronal loops by thermal conduction was studied using

nonlinear 1D MHD model in the past motivated by SOHO/SUMER observations of hot flaring loops (Ofman & Wang

2002), and since then was investigated in numerous studies (see reviews by Wang 2011; Wang et al. 2021). Recently,

both, thermal conduction and compressive viscosity as well as the radiative losses were considered on the damping of

slow magnetosonic waves in linear and second order approximations (Kumar et al. 2016). Fully nonlinear 1D MHD

models of slow magnetosonic waves that include viscosity and thermal conduction were considered (Wang et al. 2018;

Wang & Ofman 2019; Prasad et al. 2021) and it was shown that the thermal conduction must be suppressed and

compressive viscosity must be enhanced compared to classical values in hot flaring loops, to account for the observed

wave damping rates. A 2.5D MHD model with thermal conduction was used to study the propagation and reflection of

slow magnetosonic waves in a flaring loop, such as those observed by SOHO/SUMER, SDO/AIA, and Hinode X-Ray

Telescope (XRT) (Fang et al. 2015; Mandal et al. 2016).

While most coronal and global 3D MHD models solve ideal or otherwise inviscid MHD equations, here, we use

the full visco-resistive 3D MHD code NLRAT (Ofman & Thompson 2002; Provornikova et al. 2018; Ofman & Liu

2018), and extend the model to include the compressive viscosity components of the viscous stress tensor (Braginskii

1965), to study for the first time the effects of compressive viscosity on the slow magnetosonic wave dissipation in

realistic model of hot flaring coronal loops. Recently, Provornikova et al. (2018) used the 3D MHD code NLRAT to

investigate the thin radiative cooling effects on the damping of impulsively excited slow magnetosonic waves in warm

(1 MK) and hot (6 MK) coronal loops. Ofman & Liu (2018) used the 3D MHD model to study the propagation of

quasi-periodic fast mode waves trains (QFPs) in bipolar active region, and found small effects due to radiative cooling

and heat conduction on the fast mode magnetosonic waves. Recently, by analyzing SDO/AIA observations of the slow

magnetosonic damping in hot flaring coronal loops it was realized that compressive viscosity may be the dominant

wave damping mechanism (Wang et al. 2018). Motivated by recent observational and theoretical studies, we expand

the 3D MHD model with realistic magnetic geometry, density, and temperature structure of the loops to explore the

role of compressive viscosity in the excitation and dissipation of slow magnetosonic waves.

The paper is organized as follows: in Section 2 we present the observations that motivate our study, in Section 3 we

present the numerical model, boundary and initial conditions, and the physical parameters, in Section 4 we show the

numerical modeling results. Finally, Section 5 is devoted to the discussion and conclusions.

2. OBSERVATIONAL MOTIVATIONS
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In this section we describe some observational examples of slow magnetosonic waves detected in hot flaring loops

as motivation and context for our modeling study. Longitudinal intensity oscillations detected with SDO/AIA in

high-temperature EUV emission channels (94 Å of 7 MK and 131 Å of 11 MK) are characterized by the flare-excited

disturbances apparently traveling back and forth between the two footpoints of a hot flaring loop system. These hot

loop oscillations bearing the physical properties (e.g., periods, damping times, phase speeds, and trigger) in agreement

with the Doppler shift oscillations discovered with SUMER in the flare emission lines such as Fexix and Fexxi (Kliem

et al. 2002; Wang et al. 2002; Wang 2011) which are mainly interpreted as the fundamental standing slow mode waves

(Ofman & Wang 2002; Wang et al. 2003b). The intensity oscillations detected with AIA have been interpreted as

either the reflected propagating slow magnetosonic waves (Kumar et al. 2013, 2015; Nisticò et al. 2017) or fundamental

standing slow-mode waves (Wang et al. 2015). A very recent study by Prasad & Van Doorsselaere (2021b) found

evidence for the transition of initial reflected propagating waves into a standing wave in the AIA 94 Å channel during

the loop cooling phase, confirming the theoretical predictions from 1D MHD simulations by Wang et al. (2018). The

standing slow-mode oscillations were also occasionally observed in the warm (1−2 MK) coronal loops seen in AIA 171

Å and 195 Å channels (Pant et al. 2017), and relatively hot (∼3 MK) loops in AIA 335 Å EUV channel (Kim et al.

2012).

Table 1. Physical Parameters of several longitudinal intensity oscillations observed with SDO/AIA.a

Event Time Flare λ P τ Am N0 T0 w L Reference

UT Class Å min min 109 cm−3 MK Mm Mm

1 2012/05/07 17:26 C7.4 131 10.5 7.3 1.42 8.5 8 13 160 Kumar et al. (2013)

2 2013/07/20 03:38 C2.1 94 6.8 18.7 0.27 6.4 115 Kumar et al. (2015)

3 2013/12/28 12:47 C3.0 131 12.4 13.9 0.69 This studyc

– – nb 12.4 10.7 0.23 2.6 8.7 14 179 Wang et al. (2015)

– – Tb 11.6 7.7 0.16 – – – – –

4 2015/01/24 12:00 B7.9 94 10 4 8 127 Nisticò et al. (2017)

– – 94 10 7 1.5 This studyc

aColumns 2 and 3 indicate the GOES flare peak time and class. The wavelength λ indicated the AIA imaging channels used for
measuring the oscillations. The quantities P , τ , and Am are the wave period, damping time, and relative maximum amplitude.
N0 and T0 are the mean electron density and temperature of the loop, w and L are the loop width and length. The “–”
represents same value as the above row, while the space indicates no data.

b n and T indicate that the wave parameters are measured from the oscillations in density and temperature, respectively.

cThe parameters are measured from the best fits to the intensity oscillations normalized to the background trend.

In Table 1 we summarize the physical parameters of the flaring loop oscillations measured from four events reported
in the literature. The wave properties such as period (P ), damping time (τ), and relative maximum amplitude

(Am = ∆Im/I0) are mainly estimated from the intensity oscillations observed in the AIA 94 Å or 131 Å channel.

For these events P = 9.9 ± 2.3 min in the range of 6.8−12 min, τ = 11.7 ± 5.6 min in the range of 7−18.7 min, and

Am = 0.97±0.60 in the range of 0.27−1.5. We find that the quality factor τ/P = 1.2 is in agreement with that for the

SUMER oscillations (Wang et al. 2003a). We note that the maximum amplitude of intensity perturbations relative to

the loop background emission can be very large (up to Am = 1.5), suggesting the importance of nonlinearity in the

initial stages of the damped oscillations. The large relative amplitude of the oscillations in observed emissions could

be plausibly explained by the rapid cooling of the flaring loop (Reale et al. 2019). The loop thermal properties were

measured from AIA EUV images using differential emission measure (DEM) analysis (e.g., for events 1−3) or using

Hinode/XRT data with the filter ratio method (for event 4). The loop mean temperature is found to be T = 7.8± 1.0

MK and the mean density n = (5.0 ± 3.1) × 109 cm−3. The trigger of all four events listed in Table 1 is found to be

associated with small flares at the loop’s footpoint. Cool plasma ejections of velocities of several hundreds km s−1

were often detected near the flare site in AIA 304 Å or 171 Å channel (Kumar et al. 2013, 2015; Nisticò et al. 2017).

In contrast, the SUMER oscillations were often initiated with the hot plasma injection of velocities on the order of

100−300 km s−1, detected as a highly Doppler-shifted component of the Fexix spectra (Wang et al. 2015).

Two examples of such longitudinal loop oscillations were illustrated here. Figure 1 shows an event occurring in the

active region NOAA 12268, associated with a GOES B7.9-class flare that peaked in the soft X-ray flux at 12:00 UT on
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Figure 1. Longitudinal loop oscillation event observed with SDO/AIA on 24 January 2015. (a) AIA 94 Å image showing the
flare location and associated hot loop system. (b) Time-distance plot of intensities for a sampled slice (with average over its
narrow width) along the loop (yellow strip in panel (a)). The distance is measured from the end of the slice close to the flare
site. (c) Time profile of the averaged emission for a region marked in (b). The dashed curve indicates a parabolic trend. (d)
Detrended time profile showing the intensity oscillations normalized to the background trend with the best fits (red solid curve).

Figure 2. Longitudinal loop oscillations observed with SDO/AIA on 28 December 2013. (a) AIA 131 Å image showing that a
large, hot oscillatory loop was produced by a circular-ribbon flare at its footpoint. (b)-(d) Same as for Figure 1.

24 January 2015 (event #4 in Table 1). This event was first analyzed by Nisticò et al. (2017) using observations from

SDO/AIA, Hinode/EIS, and XRT. They found that a failed cool plasma eruption triggered simultaneous transverse

kink oscillations of warm loops seen in AIA 171 Å and longitudinal oscillations in a nearly co-spatial hot loop system

seen in AIA 94 Å and XRT Be thin filter. Note that there was an error in Nisticò et al. (2017) analysis of slow-mode

oscillations (see Fig. 9 in their study) where an improper fitting of wave perturbations does not provide the correct

wave amplitude and damping time, although, the measured wave period was valid. The time-distance plot reveals

the initial reflective feature and the formation of a standing wave after about two reflections as evident from the

perturbations in opposite phases between the two legs (see Fig. 1b). From the time profile of the AIA 94 Å emission

for the region marked in Figure 1b in the coronal loop, we determined the oscillation parameters by best fitting to an

exponentially-damped sine-function (see Fig. 1d). We obtain P = 10.1±1.0 min, τ = 7.1±3.7 min, and Am = 1.5±0.6,

indicated in Table 1.

songyongliang
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Figure 2 shows another event occurring in AR 11936, associated with a GOES C 3.0-class flare that peaked at 12:47

UT on 28 December 2013 (event #3 in Table 1). This event was analyzed in detail by Wang et al. (2015). The

time distance plot indicates that a fundamental standing slow magnetosonic wave has formed quickly after only one

reflection of the initial propagating disturbance (Fig. 2b). The rapid formation of standing waves similar to this case

was previously detected by SUMER (e.g., Wang et al. 2003b). We determined the oscillation parameters from the

time profile of relative intensity perturbations normalized to the background trend by the best fitting of exponentially

damped sinusoidal (Fig. 2d). We obtained P = 12.4± 1.5 min, τ = 13.9± 12.8 min, and Am = 0.69± 0.50, indicated

in Table 1.

Using the DEM technique, Wang et al. (2015) derived the time evolution of density and temperature of hot plasma

in the oscillating loop for event #3 and found that the density and temperature oscillations are nearly in phase (which

is unexpected for slow magnetosonic waves in the hot coronal loop where high thermal conductivity dissipation would

lead to a large phase shift) and the deduced polytropic index from their wave signatures is close to the adiabatic

index of γ = 5/3. The small phase shift and the value of the adiabatic index suggest the suppression of thermal

conduction and therefore significant enhancement of compressive viscosity is needed to account for the rapid wave

dissipation (see, e.g., Wang et al. 2015). The study of Wang et al. (2015) provides a new method to determine the

transport coefficients of flaring plasma from evolution of their thermal properties by coronal seismology of impulsively-

generated slow-mode waves. Wang & Ofman (2019) extended this work by refining the deduced values of transport

coefficients using numerical parametric studies. Moreover, using 1D nonlinear MHD simulations, Wang et al. (2018)

found that the model with the seismology-determined transport coefficients can self-consistently produce the standing

slow-mode wave as quickly (within one period) as observed (e.g., event #3), whereas the model with the classical

transport coefficients produces initially propagating slow-mode waves that require many footpoint reflections to form

a standing wave (e.g., event #1; see Kumar et al. 2013; Prasad & Van Doorsselaere 2021b). The quick formation

of a standing wave in the model with the modified transport coefficients can be explained by the scenario that the

anomalous viscosity enhancement facilitates the dissipation of higher harmonic components in the initial perturbation

pulse, so that the fundamental standing mode could quickly be produced. Thus, the competition between thermal

conduction and compressive viscosity in wave damping, dependent on the transport coefficients (e.g., in the normal or

anomalous conditions), may provide a unified picture accounting for excitation of a reflected propagating or standing

slow magnetosonic wave as well as different transition times from the propagating mode to the standing mode as

observed with SUMER and SDO/AIA. We note that previous 1D models could not account fully for wave leakage

and the loop curvature effects. Therefore, in the present study we extend the model to 3D MHD that provides more

realistic description of these processes.

We note that the trigger of SUMER and AIA oscillations manifests some differences in the preexisting conditions

of the oscillatory loops. The SUMER oscillations are often recurrent and the loop is hot (above ∼6 MK) prior to

the trigger of oscillations (e.g. Wang et al. 2003b, 2007). Whereas all the oscillations observed by SDO/AIA are

triggered in impulsively heated hot loops that are not previously seen in high temperature AIA channels (such as 94
Å and 131 Å). However, some observational evidence suggests that the coronal loops appear to be heated likely by

energetic particles or thermal front slightly earlier (on timescale of several minutes) than the observed propagation of

intensity perturbations along the loops (e.g., Kumar et al. 2013; Wang et al. 2018). To compare the excitation of slow

magnetosonic waves for the different initial loop conditions, we set up the loop models below with two sets of thermal

properties: in first case a loop with the maximum temperature of 6 MK situated in the ’warm’ background corona at

T0=2 MK, and in the second case a loop with the maximum temperature of 10.5 MK situated in the hot atmosphere

of T0=7 MK, guided by observations.

3. NUMERICAL MODEL, BOUNDARY, AND INITIAL CONDITIONS

We use the 3D MHD model described in Ofman & Thompson (2002); Provornikova et al. (2018); Ofman & Liu (2018)

with the addition of compressive viscosity terms to the 3D MHD equations based on the formulation by Braginskii

(1965), (see, also past 2.5D MHD studies of compressive dissipation of slow magnetosonic waves in coronal plumes by

Ofman et al. (1999, 2000)). The resistive 3D MHD equations with gravity, viscous stress tensor Π, and with standard

notation for the variables are

∂ρ

∂t
+∇ · (ρV) = 0, (1)

∂(ρV)

∂t
+∇ ·

[
ρVV +

(
Eup+

B ·B
2

)
I−BB

]
= − 1

Fr
ρFg −∇ ·Π, (2)
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∂B

∂t
= ∇× (V×B) +

1

S
∇2B, (3)

∂(ρE)

∂t
+∇ ·

[
V

(
ρE + Eup+

B ·B
2

)
−B(B ·V) +

1

S
∇×B×B + Π ·V

]
= − 1

Fr
ρFg ·V, (4)

where Fg =
L2

0

(Rs+z−zmin)2 ẑ is the gravitational force modeled with the assumption of small height of the active region

compared to the solar radius Rs, where L0 = 0.1Rs, zmin is the height of the lower boundary in the model, and

ρE = Eup
(γ−1) + ρV 2

2 + B2

2 is the total energy density. The details of the normalization of the variables are described in

Ofman & Liu (2018).

Keeping only the terms proportional to the compressive viscosity coefficient η0 we get the components of the viscous

stress tensor

Πmn = −η0W0mn (5)

W0mn =
3

2
(hmhn −

1

3
δmn)(hkhl −

1

3
δkl)Wkl (6)

Wmn =
∂Vm
∂xn

+
∂Vn
∂xm

− 2

3
δmn∇ ·V, (7)

where hm = Bm/B are the unit vectors along the magnetic field, δmn is the Kronecker delta, and the subscripts are

over the coordinates (Cartesian in our model) with implicit (Einstein) summation notation. The proton compressive

viscosity coefficient is given by

η0 = 0.96npTpτp, (8)

where np is the proton density, Tp is the proton temperature, and τp = 3m
1/2
p T

3/2
p /(4π1/2λe4np) is the proton collision

time (Braginskii 1965; Huba 2013), where mp is the proton mass, e is the electron charge, np is the proton density,

and λ is the Coulomb logarithm. In the present single-fluid MHD study, Tp = Te = T , and np = ne = n. In the model

we treat η0 as free parameter, since non-collisional kinetic processes such as wave-particle interaction may produce

an enhanced viscosity (e.g., Wang et al. 2018; Wang & Ofman 2019) and study cases with ‘classical’ (i.e., given by

Equation 8) and ‘enhanced’ (i.e., an order of magnitude increased η0, and keeping the temperature dependence T 5/2)

viscosity coefficients. The volumetric heating rate due to the compressive viscous dissipation can be calculated from

Sv = −Πmn
∂Vm
∂xn

, (9)

using implicit summation. The divergence of the viscous heating energy flux term ∇· (Π ·V) ≡ ∂
∂xn

ΠmnVm is included

in the energy equation (Equation 4) equivalent to Equation (6.33) of Braginskii (1965). However, due to the small

energy flux of the slow magnetosonic waves, the additional heating of hot flaring loops due to the viscous dissipation

of these waves is found to be negligible by comparing results with and without viscous terms in the energy equation.

We note that our 3D MHD model has the capability to compute radiative cooling and thermal conduction dissipation

terms, in addition to compressive viscosity. However, motivated by past modeling and observations we focus on the

effects of only compressive viscosity by turning off thermal conduction and radiative losses in the present modeling

study.

The initial state and the boundary conditions of the 3D MHD model active region (AR) are described in detail in

Ofman & Liu (2018). The initial state of the coronal loop in the 3D MHD model AR is shown in Figure 3. The gray

scale shows the loop density isocontour and green curves indicate several representative magnetic field lines in the

plane y = 0, and the blue and red indicate the magnetic field contours of opposite polarity. Here we summarize the

main aspects of the 3D MHD model for convenience. We use the following normalization of the 3D MHD equations:

the coordinates x → x/L0, the time t → t/τA, the velocities v → v/VA, the magnetic field B → B/B0, the density

ρ→ ρ/ρ0, and the pressure p→ p/p0, where L0 is the length scale defined below, VA is the normalizing Alfvén speed,

τA = L0/VA is the Alfvén time, B0 is the normalizing magnetic field magnitude, ρ0 is the normalizing density, and p0

is the normalizing pressure in the corona. Other physical parameters are the Lundquist number S = L0VA/η, where η



Excitation and Damping of Slow Magnetosonic Waves 7

Figure 3. The initial 3D bipolar AR model with a loop with enhanced density with Gaussian cross-section distribution 3D
loop model showing a dense loop in a bipolar magnetic configuration. The isosurface for density contrast is at 1.01. The cross
sections at z = 1.3 shows the density contrast distribution in a range of 1.0 to 1.5. The contours show the z-component of
magnetic fields at z = 1.0 with levels = ±18,±36,±55,±73,±91 G, where the red/blue represents the positive/negative polarity,
respectively, and green indicates selected field lines in the loops’ axial plane.

is the resistivity (in the present study we set S = 105 and the resistivity has negligible effect on the slow magnetosonic

waves), the Froude number Fr = V 2
AL0/(GM�), where G is the gravitational constant and M� is the solar mass, and

the Euler number Eu = p0/(ρ0V
2
A) = C2

s/γV
2
A, where Cs is the sound speed.

The initial magnetic field in the present model is a potential dipole (see, e.g. Ofman & Thompson 2002, for the

expressions of the Cartesian components of B), and the density is initialized with gravitationally stratified density

in polytropic equilibrium with the corresponding coronal temperature, and base density. Guided by observations

(Wang et al. 2015), the hot loop is initialized along a selected arched flux-tube with footpoints at z = 1 centered at

x0 = ±0.8, y0 = 0 of a radius r0 = 0.12. The loop model is specified with the larger density and temperature than in

the surrounding corona by a density ratio nr = nin/nex and temperature ratio Tr = Tin/Tex (see, Table 2, where the

subscript ‘in’ refers to the peak values in the interior of the loop and ‘ex’ refers to the external adjacent to the loop

corona). The temperature and density within the loop’s cross section at the footpoints are initialized with Gaussian

profiles given by

ρ0r(r) = (nr − 1)
(
e−(2r/r0)2 − c0

)
/(1− c0) + 1, (10)

T0r(r) = (Tr − 1)
(
e−(2r/r0)2 − c0

)
/(1− c0) + 1, (11)

where r is the radial distance to the loop’s axis, r0 is the loop radius, and the constant c0 = e−4 was chosen to match

continuously the loop’s boundary to the background corona. Taking ρ0(x, y, z, r) and T0(x, y, z, r) as the density and

temperature at a point (x, y, z), passing through which a field line has the footpoint at radial distance r from the

axis of the loop, the dependence of the initial background density and temperature on height (z) is determined by the

gravitational equilibrium and the corresponding polytropic atmosphere given by

ρ0(x, y, z, r) =

[
ργ−1

0r +
H

cgcr

γ − 1

γ

(
1

1 + c−1
g (z − 1)

− 1

)] 1
γ−1

(12)

T0(x, y, z, r) = crρ0(x, y, z, r)γ−1, (13)

songyongliang
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where cr = T0r/ρ
γ−1
0r , H = GM�mp/(2kBT0L0) is the normalized gravitational inverse scale height, where kB is the

Boltzmann constant, and cg = 10 is the gravitational length scale ratio parameter where L0 = R�/cg and R� is the

solar radius. This setting of the initial density and temperature distributions implies that the density and temperature

along the same field line within the loop have the same contrast to the background corona. With the above setting

the loop’s footpoint diameter is 10 Mm (measured as the FWHM of the cross sectional density profile) at the coronal

base, and the loop length is L ∼149 Mm, measured as the mean length of the extrapolated field lines on the loop

boundary (see, Figure 4). In the present study we use an empirical value of the polytropic γ = 1.05 appropriate for

the solar corona. Since in hot coronal loops it was found that the polytropic index is close to adiabatic due to the

suppression of thermal conduction (Wang et al. 2015), we have also preformed test runs with adiabatic γ = 5/3 and

found qualitatively similar results, consistent with the fact that the main effect of the viscosity on the wave dissipation

is in the momentum equation, not sensitive to the value of γ. It should be noted that the above initial state is not an

exact stable equilibrium, as the transverse pressure gradient in the loop is not balanced by magnetic pressure in the

initial state. However, in the low-β plasma (where β is the ratio of the thermal to magnetic pressure) the initial state

of the loop disrupts very gradually on a timescale of several hundred Alfvén times (evidently, this time scale shortens

with increased Tr and nr). We have tested the stability of the initial state by running the model with Tr = 3 and

nr = 1.5 without wave injection and found that the loop structure is well preserved to ∼ 300τA (see the parameters

for Case 0 in Table 2).

The equations are solved using the well-established modified Lax-Wendroff integration method with 4th order stabi-

lization terms on a uniform grid. The parallelized code is run typical with the resolution of 2583 with higher resolution

test runs (2582 × 514) showing similar results. The code is executed on 256 processors in parallel allowing adequate

spatial resolutions with sufficiently small time steps that satisfy the Courant–Friedrichs–Lewy (CFL) condition in the

explicit solution method. The CFL condition with viscosity terms taken into account becomes (see, e.g., Stone &

Norman 1992)

∆t ≤ min
(
c1

∆x

|Vp,max|
, c2

(∆x)2

η0

)
, (14)

where Vp,max = |Vmax| + Cmax is the fastest speed of propagation of disturbances, Vmax is the fastest flow speed,

and Cmax is the fastest phase speed of all wave modes in the computational domain, where c1, and c2 are numerical

model-dependent constants of order unity. As one can see, the inclusion of compressive viscosity, may reduce the

time step when the inequality 1
|Vmax| >

c2∆x
c1η0

is satisfied, resulting in considerable limitation on the time step and

computational resources for enhanced hot-loop viscosity. Nevertheless, the advantage of the explicit method is the

simplicity and high computational efficiency of the parallelized solution of the present visco-resistive 3D MHD model

compared to more elaborate implicit methods.

The boundary conditions are open on all external planes of the 3D computational domain, with line-tied boundary

conditions at the coronal plane (z = 1). The slow magnetosonic waves are produced impulsively by a time dependent

boundary condition of a velocity pulse injected at the right footpoint of the model coronal loop (centered at x0 = 0.8,

y0 = 0) with the method similar to past studies (Provornikova et al. 2018) (see their Equation (9)-(11)) with the

direction of the injected velocity along the magnetic field. The velocity pulse is introduced at the time interval

between t1 = 12 and t2 = 42 with the magnitude V0,i given in Table 2 in each case. The flow injection was modeled

along the magnetic field direction B/|B| in the coronal loop as

Vi(t) = 0.5Vi,0 {1− cos[2π(t− t1)/t0]} e−{[(x−x0)2+(y−y0)2]/r2i,0}
2

, t1 < t < t2, (15)

where t0 = 30, and ri,0 = 0.7r0, with the same form for the associated temperature pulse and normalized amplitude

Ti,0 = (γ−1)Vi,0/Cs. The time interval of the pulse is chosen to be much shorter than the expected slow magnetosonic

wave period in the loop, guided by observations (Wang et al. 2005, 2018).

We provide the model parameters of the various cases in the present study in Table 2. We use the following physical

parameters for our model normalization (see Table 2): the magnetic field, B0 = 100 G, density n0 = 109 cm−3,

length scale, L0 = 7 × 109 cm. With these parameters and temperature T0=2 MK in Cases 0-3, the sound speed is

Cs = 182 km s−1, the Alfvén speed, VA = 6897 km s−1, the Alfvén time, τA = 10.1 s, and the classical Braginskii

(1965) compressive viscosity coefficient η0 = 0.615 g cm−1 s−1 in the corona outside the loop. The normalized viscosity

coefficient is obtained from η0 → η0/(vAL0ρ0). In Cases 4-7 we use T0=7 MK, Tr = 1.5 with corresponding higher

η0, and the sound speed maximal value 416 km s−1 inside the loop. Thus, to keep the injection velocity and waves
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Figure 4. The initial state of the hot and dense coronal loop in the 3D MHD model AR in normalized units shown in the x− z
plane cut through the center of the loop. (a) The initial loop density with contrast nr = 1.5. Overlaid are the magnetic field
lines (white) and a cut along the loop (black). (b) The corresponding initial loop temperature structure with loop-to-corona
temperature ratio Tr = 3 with T0 = 2 MK. (c) The plasma β in the computational domain. The contours show the values of
β=0.01, 0.05, 0.1.

Table 2. Parameters of the numerical model runs for the various cases in the present study. The normalized injection velocity
magnitude Vi,0, the coronal temperature, and the ratio of the loop temperature Tr, and the ratio of the loop density nr with
respect to coronal values. The corresponding normalized coronal values of the compressive viscosity coefficient η0: Cases 2 and
5 use the classical values; Cases 3 and 6 use ten times enhanced compressive viscosity coefficients.

Case # Vi,0 [VA] T0 [MK] Tr nr η0

0 0.0 2 3 1.5 0.0

1 0.0756 2 3 1.5 0.0

2 0.0756 2 3 1.5 7.6× 10−5

3 0.0756 2 3 1.5 7.6× 10−4

4 0.1 7 1.5 1.5 0.0

5 0.1 7 1.5 1.5 1.6× 10−3

6 0.1 7 1.5 1.5 1.6× 10−2

7 0.01 7 1.5 1.5 0.0

at similar nonlinearity inside the loop as in Cases 0-3, we set Vi,0 = 0.1VA in Cases 4-7. Hence, we use the same

ratios of the injected velocities and the peak slow magnetosonic speeds (i.e., the sonic Mach number) for the two

modeled temperatures inside the loops in Cases 1-6. Note, that the classical compressive viscosity depends primarily

on temperature as η0(T ) ≈ η00T
5/2, with some weak dependence of the Coulomb logarithm on T . Thus, for a loop

with Tr = 1.5 the compressive viscosity at the loop axis peaks with ∼ 2.8 times the coronal value, and for Tr = 3 the

compressive viscosity peaks with ∼ 16 times the coronal value. In the present study we compare inviscid modeling

results with the classical values of η0 modeling results, and ten-times enhanced viscosity cases.
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4. NUMERICAL RESULTS

In Figures 5-13 we present the results of the 3D MHD modeling of waves excited in a hot and dense coronal loop by

a velocity pulse at the footpoint for Cases 1-7 with the parameters summarized in Table 2.

Figure 5. The results of the 3D MHD model of the slow magnetosonic wave injection into the coronal loops in the initial and
later stages of the evolution for Case 2 with T = 2 MK, Tr = 3, nr = 1.5, and η0 = 7.6× 10−5. The snapshot of the variables
in the x− z plane at y = 0 at two times of the evolution. (a) The density ρ at t = 30τA, the white lines show several magnetic
field lines. (b) The velocity magnitude v with arrows indicating the direction of the velocity vectors for |v| > 0.06vmax, where
vmax is the maximal velocity in the plane. (c) The temperature T , (d) the plasma β. (e)-(h): Same as (a)-(d) but for the cases
at time t = 90τA. The animation of ρ (panels a, e) and v (panels b, f) for times 0-312τA is available online.

In Figure 5 we show the the snapshot of the variables in the x − z plane at y = 0 (the plane of the loop axis) at

two times for Case 2 with the parameters T = 2 MK, Tr = 3, nr = 1.5, and η0 = 7.6 × 10−5. The coronal loop

density ρ is shown in Figure 5a at t = 30τA overlayed with several representative magnetic field lines. The enhanced
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density due to the velocity pulse injection is evident above the right footpoint of the loop. The corresponding velocity

magnitude v due to the pulse is presented in Figure 5b, where the fixed-length arrows indicated the local direction of

the velocity vectors. The enhanced loop temperature T , and the plasma β are shown in Figure 5c and 5d, respectively.

The temperature increase due to the pulse is small relative to the background hot-loop temperature mainly because of

the choice of γ=1.05. Thus, the main contribution to β increase in the loop is due to the density pulse. The evolution

of the pulse and the reflected slow magnetosonic wave is evident in Figures 5e-5g at t = 90τA after reflection from the

left footpoint of the loop. In addition to the reflection, there is a gradual evolution in the background state due to

the nonequilibrium initial state of the loop. The animation of the density in the x − z plane cut at y = 0 due to the

injection of the pulse and the generation of the waves for Case 2 is available online.

Figure 6 shows the cut in the planes perpendicular to the plane of the loop with peak temperature Tmax=6 MK

inside the loop. The variables in x − y plane at z = 1.18 and at the y − z plane at x = 0 for Case 2 are shown.

The x − y plane is located near the footpoints of the loop at z = 1.18 exhibiting the density, velocity, temperature,

and β at t = 90τA. The transverse waves generated near the footpoints by the flow pulse are evident in the density

variability outside the loop (see the related animation online) in Figure 6a. The flows associated with the transverse

oscillations are shown in Figure 6b, and the temperature variability in Figure 6c. The values of β � 1 are small in this

plane near the footpoints of the loop. The y − z plane at x = 0 cuts across the loop apex and shows the oscillations

and the associated velocities outside the loop. The larger scale changes in the loop density and temperature, and

the associated velocities are due to gradual changes in the background loop structure, associated with small changes

in the magnetic structure and the effects of the velocity pulse. The small magnetic field changes produce amplified

changes of the thermal pressure in the low-β plasma, as evident from the pressure balance condition (in normalized

units) B2 + βp = const. Thus, the small amplitude fast magnetosonic perturbations carry a significant energy flux of

the slow magnetosonic waves in the low-β plasma, evident by considering the linearized perturbation of the pressure

balance condition 2δBB0 + βδp = 0. It is evident that ∆Bz/B0 and Vx of the wave are phase shifted by half period

and are related by a factor of two in amplitude after the initial pulse (see, Figures 7 and 11). This suggest that the

vertical kink mode is driven by the slow mode wave (see the discussion in Ofman et al. (2012)). Thus, quantitative

estimate of the slow/fast mode coupling is required to improve coronal seismology application to the determination of

the dissipation coefficients. This coupling could depend on several factors, such as the details of the loops’ structure,

the magnitude of the pulse (i.e., nonlinearity), and the temperature of the loop. The present results are in qualitative

agreement with previous finding of Ofman et al. (2012) that demonstrated the mode couplings and the generation of

both, slow and fast mode oscillations by velocity pulse in hot coronal loops in more simplified AR model. The main

differences are due to the crossectional loop structure, the details of the wave excitation, and compressive viscosity in

the present study.

We compare the temporal evolution of the variables at the loop apex (x = 0, y = 0, z = 1.6) for the inviscid

case (Case 1), with classical compressive viscosity coefficient η0 = 7.6 × 10−5 in normalized units (Case 2), and with

ten times enhanced compressive viscosity coefficient η0 = 7.6 × 10−4 for the Tmax=6 MK loop case in Figure 7.

For reference the evolution due to the initial background adjustment and the gradual change without flow injection

(Case 0) is shown. Note, that inside the hot loop the values of the compressive viscosity coefficient increases by a

factor T
5/2
r = 32.5 = 15.6 at the loop axis. It is evident in Figure 7a that the velocity component along the loop at the

apex (Vx) shows oscillatory evolution, with initial peak due to the arrival of the pulse at the loop apex, followed by

damping of the wave amplitude, with the inviscid case evolution nearly identical to the case with classical viscosity,

and with evident increased dissipation for the enhanced viscosity case. The main period of the velocity oscillations is

∼ 150τA, while the magnetic field perturbations ∆Bx and density oscillations show about half of the period of ∼ 80τA
at the apex. The wave mode and the frequency doubling found in the magnetic field and density is the nonlinearly

driven vertical kink mode oscillation, consistent with the discussion in Ofman et al. (2012). The damping time is

on the order of one oscillation period, with dominant damping in the initial nonlinear stage of the oscillations and

with similar damping time for the inviscid, classical viscosity, and enhanced viscosity in Cases 1-3. The calculated

values of the damping time from an exponential fit to the two peaks of Vx are ∼ 131τA for η0 = 7.6 × 10−5 (nearly

identical to the inviscid case), and ∼ 127τA for η0 = 7.6× 10−4 with similar value for the inviscid case. Since the flow

injection is along the loop, the largest velocity components are in the x − z plane, and due to symmetry of the loop

with respect to y = 0 plane, the Vy component is smaller than the Vx and Vz components everywhere in the loop. The

velocity and density oscillations show weak dependence on η0 at the apex, while the small magnetic field component

perturbations ∆Bx (Figure 7b) show the clearest (albeit small) dependence on η0. This is likely due to the coupling
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Figure 6. The results of the 3D MHD model of the slow magnetosonic wave injection into the coronal loop for Case 2 with
T = 2 MK, Tr = 3, nr = 1.5, and η0 = 7.6 × 10−5 at t = 90τA. The snapshot of the variables in the x − y plane at z = 1.18:
(a) the density ρ, (b) the velocity magnitude v with arrows indicating the direction of the velocity vectors, (c) the temperature
T , (d) the plasma β. The variables in the y − z plane at x = 0: (e) ρ (f) v (g) T , (h) β. The animations of ρ (panels a, e) and
v (panels b, f) for times 0-312τA are available online.
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Figure 7. The temporal evolution of the variables near loop apex at x = 0, y = 0, z = 1.6 for Cases 1 (black), Case 2 (blue)
and Case 3 (red). Note, that Case 1 and 2 are nearly identical. Case 0 (green) without flow injection is shown for reference.
(a) The velocity components Vx (solid), Vy (long dashes), and Vz (short dashes). (b) The normalized magnetic field component
perturbations ∆Bx/B0 (solid), ∆By/B0 (long dashes), and ∆Bz/B0 (short dashes), where B0 is the magnetic field magnitude
at t = 0 at the plotted location. (c) The normalized density perturbation ∆ρ/ρ0 (solid) and temperature perturbation ∆T/T0

(long dashes) where ρ0 and T0 are the values at t = 0 at the plotted location.

of the slow magnetosonic wave produced by the pulse with nonlinear fast magnetosonic oscillations through variation

of total (thermal and magnetic) pressure perturbation inside the loop. The evolution of the density perturbation ∆ρ

and temperature perturbation ∆T is shown in Figure 7c. We find that the ratio of the magnetic and thermal pressure

perturbations (in normalizing units) is consistent with the small value of β ∼ 10−2, as expected from the pressure

balance. This can be shown by using the normalized pressure balance condition B2 + βp = const. and deriving the

ratio of the first order perturbations of the magnetic and thermal pressures around the pressure balance. Thus, we get

the relations ∆(B2)/∆p = 2(∆Bx + ∆By + ∆Bz)/(∆ρ+ ∆T ) ∼ β, where we have used B = 1, T = 1, and ρ = 1 for

the normalized background quantities. We note that since the plasma is nearly isothermal ∆T ≈ 0 can be neglected

compared to ∆ρ in the above expression. In addition to the wave, the temperature is affected by the non-periodic

change in the background equilibrium, as evident from the decrease of the temperature at the apex of the loop (see,

Figure 5g).

The space-time plots of Case 1 (inviscid), Case 2 with classical compressive viscosity η0 = 7.6 × 10−5 and Case 3

with an order of magnitude enhanced compressive viscosity η0 = 7.6× 10−4 are shown in Figure 8, where the density

(left panels) and velocity (right panels) perturbations move along the loop for the three cases. The onset of the pulse

is at t = 12τA, and reflection of the wave is evident at t ∼ 75τA, with the propagation speed is evident from the slope

of the linear fits (red lines) to the model data point (yellow crosses). It is evident that the initial disturbances show

distinct propagation speeds. From the linear best fits, we obtain the speeds Vp1 = 414± 25 km s−1 and Vp2 = 194± 6

km s−1 for Case 1, Vp1 = 401 ± 49 km s−1 and Vp2 = 189 ± 5 km s−1 for Case 2, and Vp1 = 383 ± 18 km s−1 and

Vp2 = 166 ± 9 km s−1 for Case 3. We find that the initial upward propagation speeds are larger than the maximum

sound speed (∼323 km s−1) at Tmax=6 MK while the downward propagation speeds are close to the background Cs
(∼187 km s−1) at T0=2 MK. The slightly supersonic, initial shocked wave front is be formed by injected flow when

traveling from the footpoint towards the loop apex, as evident in Figures 5a, b and the associated animations. We

also notice that in the case with the enhanced viscosity (Case 3) the wave front propagates at slightly slower speed

(by about 8%-17%) than the case without viscosity (Case 1), since the shock front has dissipated. The damping of the

wave is evident from the decrease of the intensity of the density and velocity perturbations, where the dominant effect
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Figure 8. Space-time plots of the density (left panels) and the velocity component parallel to the magnetic field (right panels)
for a cut along the loop as shown by the black line in Figure 4a due to injection of a flow pulse. (a) ρ and (b) V for Case 1
without viscosity. (c) and (d): Same as (a) and (b) but for Case 2 with η0 = 7.6× 10−5. (e) and (f): Same as (a) and (b) but
for Case 3 with η0 = 7.6× 10−4. In left panels, we measure the wave propagation speeds by linear fits (red lines) to the marked
points (pluses) on the bright ridges (see text in detail). In left panels, the yellow crosses and the red lines were used to calculate
propagation velocity of the perturbations.

is leakage and the classical viscosity has small effect, with more pronounced viscous damping in Case 3 with enhanced

viscosity.

Figure 9 shows the the snapshot of the variables in the x − z plane at y = 0 through the loop axis at two times

for Case 5 of a hotter loop (than in Cases 0-4) with T = 7 MK, Tr = 1.5, nr = 1.5, and correspondingly higher

classical compressive viscosity coefficient η0 = 1.6 × 10−3 in normalized units. The coronal loop density ρ is shown

in Figure 9a at t = 33τA overlayed with several representative magnetic field lines. The enhanced density due to the

velocity pulse injection is evident above the right footpoint of the loop as it propagates towards the apex. The larger

Cs in the loop in Case 5 compared to Case 2 results in faster propagation of the disturbance (note, that the injection

velocity amplitude is similar in both cases in terms of the two Cs’s). The corresponding velocity magnitude v due to

the pulse is shown in Figure 9b, where the fixed-length arrows indicating the local direction of the velocity vectors.

The enhanced loop temperature T , and the plasma β are shown in Figure 9c and 9d, respectively. It is evident that

the temperature increase due to the pulse is small relative to the background hot-loop temperature, and the β increase

in the loop is small, and therefore difficult to distinguish from the background corona in the larger β case, that reaches

values β > 1 (indicated by the white contour) in the top part of the model AR. The evolution of the pulse and the

reflected slow magnetosonic wave is evident at later time t = 63τA, shown in Figures 9e-9g following reflection from
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Figure 9. The results of the 3D MHD model of the slow magnetosonic wave injection into the coronal loops in the initial and
later stages of the evolution for Case 5 with T = 7 MK, Tr = 1.5, nr = 1.5, and η0 = 1.6× 10−3. The snapshot of the variables
in the x− z plane at y = 0 at two times of the evolution. (a) The density ρ at t = 33τA, the white lines show several magnetic
field lines. (b) The velocity magnitude v with arrows indicating the direction of the velocity vectors for |v| > 0.06vmax, where
vmax is the maximal velocity in the plane. (c) The temperature T , (d) the plasma β. At time t = 63τA (e) same as (a), (f) same
as (b), (g) same as (c), (h) same as (d). The animation of of ρ (panels a, e) and v (panels b, f) for times 0-312τA are available
online.

the left footpoint of the loop. Here as well we see gradual evolution of the background state of the loop as the initial

state is not quite in equilibrium. The animation of the density in the x− z plane cut at y = 0 due to the injection of

the pulse and the generation of the waves for Case 5 is available online.

In Figure 10 we show the cuts in the planes perpendicular to the plane of the hotter loop axis with peak temperature

Tmax=10.5 MK on the loop axis. The x− y plane at z = 1.18 and the y − z plane at x = 0 of the variables are shown

for Case 5. The x − y plane near the footpoints of the loop at z = 1.18 shows the density, velocity, temperature,
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Figure 10. The results of the 3D MHD model of the slow magnetosonic wave injection into the coronal loops for Case 5 with
T = 7 MK, Tr = 1.5, nr = 1.5, and η0 = 1.6× 10−3 at t = 63τA. The snapshot of the variables in the x− y plane at z = 1.18:
(a) the density ρ, with the white lines showing several magnetic field lines. (b) The velocity magnitude v with arrows indicating
the direction of the velocity vectors. (c) The temperature T . (d) The plasma β. The variables in the y− z plane at x=0: (e) ρ,
(f) v, (g) T , (h) β. The animations of ρ (panels a, e) and v (panels b, f) for times 0-312τA are available online.

and β at t = 63τA. The transverse compressible fast magnetosonic waves generated near the footpoints by the slow
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mode pulse are evident in the density perturbations outside the loop (see the related animation online) in Figure 10a.

The velocities associated with the transverse fast magnetosonic oscillations are shown in Figure 10b, and the spatial

perturbation of the temperature is evident. The values of β � 1 are small in this plane near the footpoints of the

loop compared to the peak values of β in the model AR outside the loop. The y − z plane at x = 0 that cuts across

the loop apex shows the oscillations and the associated velocities outside the loop. The modification of the initial

loop density and temperature background structure is evident, and the associated flows are due to the disruption of

the near-equilibrium initial state, in combination with the nonlinear effect of the velocity pulse that leads to gradual

changes in the loop structure, associated with small changes in the magnetic structure. These results as well are in

qualitative agreement with previous finding of Ofman et al. (2012) that demonstrated the mode couplings and the

generation of both slow and fast mode oscillations by velocity pulse in coronal loops, where the present compressive

viscosity damps some of the wave oscillations, while the present model loop cross-sectional structure improves the the

wave trapping.

(a)

0 50 100 150 200 250 300time

-0.03

-0.02

-0.01

0.00

0.01

V x, 
V y, 

V z

(b)

0 50 100 150 200 250 300
time

-0.01

0.00

0.01

0.02

0.03

D
B x

/B
0, 
D

B y
/B

0, 
D

B z
/B

0

(c)

0 50 100 150 200 250 300
time

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

D
r
/r

0, 
D

T/
T 0

Figure 11. The temporal evolution of the variables near loop apex at x = 0, y = 0, z = 1.6 for Cases 4 (black), Case 5
(blue), Case 6 (red), Case 7 (green). (a) The velocity components Vx (solid), Vy (long dashes), and Vz (short dashes). (b)
The normalized magnetic field component perturbations ∆Bx/B0 (solid), ∆By/B0 (long dashes), and ∆Bz/B0 (short dashes),
where B0 is the magnetic field magnitude at the plotted location. (c) The normalized density perturbation ∆ρ (solid) and
temperature perturbation ∆T (long dashes) where ρ0 and T0 are the values at t = 0 at the plotted location.

We compare the temporal evolution of the variables at the loop apex (x = 0, y = 0, z = 1.6) for the hotter

loop in Cases 4-6 with Tmax=7 MK and Tr = 1.5 for the inviscid Cases 4, with classical compressive viscosity

with η0 = 1.6 × 10−3 in normalized units (Case 5), and with ten times enhanced compressive viscosity coefficient

η0 = 1.6 × 10−2 (Case 6) in Figure 11. It is evident in Figure 11a that the velocity component along the loop at

the apex (Vx) shows oscillatory evolution, with initial peak due to the arrival of the pulse at the loop apex and

shorter period of 70τA compared to the cooler loop cases. Using best fit exponential decay to the slow magnetosonic

wave velocity component Vx at the apex as shown in Figure 12, we find that the decay rate in the inviscid Case 4 is

td = 169τA, in Case 5 with η0 = 1.6 × 10−3 the damping time is td = 110τA, while in Case 6 with η0 = 1.6 × 10−2

the damping time is td = 54τA. Here as well the magnetic field ∆Bx/B0 and density oscillations at the apex show

about half of the period of ∼ 35τA, since they are due to the nonlinear fast magnetosonic wave, while δBz/B0 is about

half the amplitude of Vx and phase shifted by half wave period suggesting vertical kink mode oscillations. The small

amplitude magnetic oscillation (Figure 11b) at the apex show the same period as the density oscillation, due to the

variation of the total pressure perturbation resulting in nonlinear coupling between the slow and fast magnetosonic

waves. We note, that when a standing slow mode wave is formed in the loop, the apex of the loop has a node in
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Figure 12. Measurements of the oscillation parameters for Vx near loop apex by fitting the envelope with an exponential decay
function for the cases with η0 = 0 (a), η0 = ηc (b), and η0 = 10ηc (c), where ηc represents the classical viscosity coefficient. The
dashed line indicates the best fit exponential decay to the peaks of Vx. The values of the period, P , and the damping times, td,
are indicated on the panels.

density perturbations. All variable oscillations show considerable dependence on η0, demonstrating the coupling of the

pulse with nonlinear fast magnetosonic oscillations. The evolution of the density perturbation ∆ρ and temperature

perturbation ∆T is shown in Figure 7c. The temperature is also affected by the change in the background equilibrium,

as evident from the non-oscillatory decrease of the temperature at the apex (see, Figure 9g), but with a smaller relative

magnitude than in Cases 2-4 (note the difference of the normalizing temperature T0 indicated in Table 2). It is evident

that the compressive viscosity in a hot loop (T = 10.5Mk) has stabilizing effect on the background non-equilibrium,

since the viscous force damps flows along the field, and hence decreases the associated changes in the loop structure.

The space-time plot of the density and velocity oscillations along the loop due to the flow injection for Cases 4-6 are

shown in Figure 13 for the hot loop with peak temperature Tmax=10.5MK. Case 4 is without viscosity, Case 5 is with

classical value of the compressive viscosity coefficient, η0 = 1.6× 10−3, and Case 6 with ten times larger than classical

viscosity coefficient η0 = 1.6 × 10−2. It is similar to the case when T0=2 MK that the initial disturbances show the

upward wave front propagates at a speed faster than the downward wave front. With the linear best fits, we measured

their propagating speeds Vp1 = 775 ± 10 km s−1 and Vp2 = 391 ± 10 km s−1 for Case 4, Vp1 = 705 ± 36 km s−1 and

Vp2 = 357± 20 km s−1 for Case 5, and Vp1 = 731± 37 km s−1 and Vp2 = 373± 20 km s−1 for Case 6. Compared to

the slow magnetosonic speed Cs=428 km s−1 for peak temperature in the loop Tmax=10.5 MK, we obtained the mean

upward propagation speed V̄p1 = (1.72± 0.08)Cs, and the mean downward propagation speed V̄p2 = (0.87± 0.04)Cs.

The downward wave speed is about half the upward wave speed. The strong effect of the compressive viscosity damping

of the wave amplitude is evident in the classical as well as the enhanced viscosity cases compare to the inviscid model

in the density (left panels) and velocity (right panels) perturbations. The effects of the gradual loop background

variability is less important on these timescales, compared to the lower temperature loop in Cases 1-3. We have also

tested the effect of injected velocity magnitude on the excitation of the slow magnetosonic waves and on the nonlinear

effects. In Case 7 velocity amplitude was reduced by a factor of 10 with respect to Case 4 of the 3D MHD model

AR (all other parameters were identical). As expected, the smaller injection amplitude Vi,0 = 0.01, produces smaller

amplitude slow magnetosonic waves, that appear more linear (i.e., sinusoidal) with even smaller amplitude nonlinear

fast magnetosonic waves compared to the larger amplitude waves produced with Vi,0 = 0.1 in Case 4. Comparing the

amplitudes of the first peak of the oscillations at the loop apex following the flow injection with Vi,0 = 0.01 we find that

the slow magnetosonic waves velocity amplitude Vx has decreased by a factor of ∼14, the vertical magnetic oscillations

amplitude in Bz decreased by a factor of ∼ 18, while the magnetic oscillations amplitude in Bx has decreased by factor

of ∼ 35 compared to Case 4 with Vi,0 = 0.1, i.e., exhibiting nonlinear dependence of the amplitudes on Vi,0.

We compare the 3D MHD results of the propagation and damping of slow magnetosonic waves to 1D numerical

model along the coronal loop, approximated with a uniform background density and temperature using average values

along the loop in Cases 4-7 with length L = 149 Mm. The background magnetic field is taken to be uniform along

the loop, and the flow was injected with small amplitude V0 = 0.00145VA (i.e., linear regime) at the boundary in the

1D model. We find that for the cases with T0 = 10.5MK the fundamental mode period is P ∼ 70τA = 707 s in the 1D

model, in excellent agreement with the period obtained with the 3D model, as well as with the fundamental standing

mode period obtained from the analytical 1D model using the expression Cs = 2L/P (e.g., Edwin & Roberts 1983)

and VA >> Cs.
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Figure 13. Space-time plots of the density (left panels) and the velocity component parallel to the magnetic field (right panels)
for a cut along the loop as shown in Figure 4a (marked with black line) due to injection of a flow pulse. (a) ρ and (b) V for
Case 4 without viscosity. (c) and (d): Same as (a) and (b) but for Case 5 with η0 = 1.6× 10−3. (e) and (f): Same as (a) and
(b) but for Case 6 with η0 = 1.6× 10−2. In left panels, we measure the wave propagation speeds by linear fits (red lines) to the
marked points (pluses) on the bright ridges (see text in detail). In left panels, the yellow crosses and the red lines were used to
calculate propagation velocity of the perturbations.

Further, we compared the viscous damping times of the slow mode waves computed with the 3D MHD model to the

1D model computations, and found that the viscous dissipation times of the slow magnetosonic waves obtained with

the 1D model were different by approximately a factor of two compared to the 3D MHD dissipation times. For classical

viscosity coefficient for this temperature the damping was td = 210τA in the 1D model compared to td = 109τA in

3D MHD model; for enhanced viscosity by a factor of ten of the classical value the damping time in 1D model was

td = 25τA compared to td = 54τA obtained in 3D MHD model. For the inviscid case the slow waves were practically

undamped in 1D model, while the damping time was td = 169τA in the 3D MHD model, consistent with leakage

as the main damping mechanism in the inviscid 3D coronal loop case. Thus, while the fundamental mode period is

reproduced well in 3D MHD and in 1D models there are considerable difference between the 1D model and nonlinear

3D MHD calculations of the slow mode wave damping times strongly suggesting that 3D MHD modeling is required

to accurately account for slow magnetosonic wave viscous damping times in realistic coronal loops.

Figure 13 reveals the important role of compressive viscosity in quick formation of the standing mode from initially

excited propagating slow magnetosonic pulse. We find that the initial propagating perturbations transition into a

standing wave pattern (characterized by nearly opposite-phase oscillations between the two legs) after about four
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reflections in Case 4 with η0=0 (see Figure 13a). The formation time of the standing wave reduces to about two

reflections in Case 5 with η0 taking the classical value (see Figure 13b). While the standing wave forms quickly

following only one reflection in Case 6 (see Figure 13c) when η0 is enhanced by an order of magnitude compared to the

classical value. The formation of a fundamental mode in Case 6 is also evident from the node of the density forming

in the middle (apex) of the loop (see Figure 11c). Despite some effects from wave leakage due to nonlinear coupling

with other wave modes, the rapid formation of the standing wave due to enhanced viscosity in the 3D MHD model

is consistent with that obtained based on 1D MHD simulations by Wang et al. (2018); Wang & Ofman (2019) and

supports the conclusion that quick excitation of the fundamental standing slow mode wave, as observed in some flaring

hot loops (e.g., Wang et al. 2003a, 2015), could be due to anomalous enhancement of compressive viscosity along the

magnetic field due to a physical process that remains to be fully understood.

5. DISCUSSION AND CONCLUSIONS

Recent studies used coronal seismology techniques to analyze slow-mode magnetosonic loop oscillation and damping

observed with SDO/AIA, found evidence for suppressed thermal conduction and significantly enhanced compressive

viscosity in flaring hot (T ∼ 10 MK) coronal loops. Furthermore, the transport coefficients were estimated based on

a parametric study of wave properties using 1D nonlinear MHD loop model in combination with the linear theory.

However, neither the past 1D studies (nor 2.5D MHD studies that exclude out-of-plane wave mode coupling) are

capable to account fully nor self consistently for the leakage of the slow magnetosonic wave in the coronal part of

the loop, nor for the nonlinear coupling to other wave modes, such as fast magnetosonic and kink oscillation. These

couplings could significantly affect hot coronal loops, and impact coronal seismology application.

While main trapping of the slow magnetosonic waves in low-β plasma is by the magnetic field, where in the limit

of infinite B0 and β → 0 the slow magnetosonic are confined to travel strictly along the magnetic field lines (see the

review Nakariakov & Kolotkov 2020). However, in curved, finite magnetic field, the leakage could play an important

role as found in past studies (Selwa et al. 2007; Selwa & Ofman 2009; Ofman et al. 2012). In particular, the importance

of the slow magnetosonic wave leakage and nonlinear coupling was demonstrated in a 3D MHD study by Ofman et al.

(2012) of hot coronal loops in a model AR. While the enhanced temperature cross-field structure of the coronal loops

in the present model the trapping of slow magnetosonic waves by forming a leaky waveguide inside the loop (since

Tr > 1, see the discussion of leaky waveguides in Davila (1985)), evident by comparing the damping rate in Figure 7

to the damping rate Ofman et al. (2012) Figure 8), the leakage is still significant in causing the slow-mode damping as

evident from the present inviscid results and with classical values of the compressive viscosity coefficient. However, the

enhanced compressive viscosity suppresses the nonlinearity effects by quickly reducing the wave amplitude, and hence

the effects of leakage become relatively (to the inviscid or classical viscosity cases) less important in the damping, and

in these cases the damping is dominated by the viscous dissipation of the slow magnetosonic waves.

Using 3D MHD model of a bipolar AR initialized with background hot and dense coronal loop we demonstrate the

excitation and dissipation of slow magnetosonic waves in realistic coronal loop geometry, with compressive viscosity

along the magnetic field. We investigate the effects of classical and enhanced compressive viscosity coefficients on

the propagation and dissipation of the waves in hot coronal loops and compare the results to the inviscid 3D MHD

model. We find that in the case of hot loop with peak temperature of Tmax=6 MK the effects of classical as well

as enhanced compressive viscosity are small on the loop oscillation dissipation, and the main effects are leakage and

nonlinear coupling to fast magnetosonic (or kink) waves, in agreement with our previous inviscid model 3D MHD

AR studies. However, we find that for hotter loop with peak temperature Tmax=10.5 MK, both classical compressive

viscosity (that is significantly larger than in 6MK loops due to the viscous coefficient scaling as η0 ∝ T 2.5), as well

as enhanced compressive viscosity play important roles in the damping of the slow magnetosonic waves in the model

coronal loops. In addition, the faster Cs (i.e., higher frequency) wave in the hotter loop is subject to increased effect

of viscous dissipation compared to the lower temperature (lower Cs) wave dissipation, due to the longer path traveled

by the wave in the viscous medium in the same time interval. Comparison of the viscous damping times obtained from

the 3D MHD model to more approximate 1D calculations show significant differences (factor of ∼ 2) in the results.

We find from our model that the enhance viscosity can facilitate the rapid formation of a standing slow magnetosonic

wave in the hot flaring coronal loop by damping quickly the higher harmonics, resulting in fundamental mode oscillation,

in agreement with the observations reviewed in Section 2. Moreover, the 3D MHD model demonstrated that the

enhanced compressive viscosity leads to extremely rapid damping within a couple of oscillation periods as seen in

observations. The decreased amplitude of the wave due to the viscous damping dissipates the nonlinearity effects, such
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as wave steepening, and leads quickly to the linear regime of small amplitude oscillations. Our model also demonstrates

that the changes in the initial background hot loop structure (seen in SDO/AIA in hot flaring loops by, e.g., Wang

et al. (2018)) may increase the leakage rate of the slow magnetosonic waves. The present more realistic 3D MHD

model then previous studies of AR with a hot and dense loop that considers the effects of compressive viscosity on the

dissipation of slow magnetosonic waves allows improved determination of dissipation coefficient in hot flaring coronal

loops, important for coronal seismology and for the understanding of coronal heating processes.
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